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Abstract. Ultrafast light pulses can be used to control electronic, magnetic and structural 

phases of complex solids. Here, we investigate the dynamics of insulator-metal phase 

transitions in colossal magnetoresistive (CMR) manganites by a combination of femtosecond 

visible-to-midinfrared pump-probe techniques and transport measurements. We show that an 

insulator-metal transition can be stimulated in CMR manganites by both above bandgap 

excitation and selective excitation of individual vibrational degrees of freedom. These two 

approaches rely on the ultrafast manipulation of parameters controlling the electronic filling 

and the electronic bandwidth respectively, extending the concepts of filling and bandwidth 

control to the ultrafast timescale. The ultrafast vibrational control of correlated-electron phases 

may provide new insights into the role played by lattice vibrations in determining the 

electronic properties of complex solids. 

1.  Introduction 
Manganites pose an important and convenient testing ground for studying electron correlation 

phenomena and exhibit close analogies with a wide variety of materials in the correlated-electron 

family, including high-Tc superconducting cuprates [1]. In these systems, the strong interplay between 

charge, spin, orbital and lattice degrees of freedom results in rich phase diagrams. Phase competition 

at the boundaries between these phases leads to a number of remarkable phenomena including charge-

ordered and striped phases, orbital and magnetic ordering, half-metallicity, phase separation, and 

colossal magnetoresistance (CMR) [2]. Arguably, the most striking aspect of the physics of 

manganites is the occurrence of a number of metal-insulator transitions, initiated for instance via 

perturbations of temperature, magnetic field, pressure, and irradiation with light.  

To date the various electronic phases, structural phases, and correlation phenomena in manganites 

have been studied primarily in the quasi-static regime, as a function of adiabatic changes in doping, 

pressure, temperature, and applied field.  Within the Hubbard model [3], an insulator-metal transition 

in a solid can be controlled by acting on two parameters: the electronic bandwidth and the electronic 

                                                      
5
 To whom any correspondence should be addressed 



 

 

 

 

 

 

filling. In an A1-xAxBO3 perovskite, the amount of doping divalent ions, x, controls the electronic 

filling, which can promote the delocalization of the charge via the double-exchange mechanism [3]. 

On the other hand, bandwidth control relies on the dependence of the transfer energy on the lattice 

distortion [3]: the smaller the ionic radii of cations at the A site of the perovskite lattice, the smaller the 

transfer integral and the larger the tendency to charge localization. Here, we demonstrate two 

analogous routes for the ultrafast control of insulator-metal transitions in correlated solids. In a 

photoinduced phase transition, the sudden electronic rearrangements due to photocarrier generation are 

shown to melt the charge and orbitally ordered state, driving the solid into a metastable metallic phase. 

In a vibrationally induced phase transition, midinfrared pulses are used to trigger selective structural 

modulations that modulate the electronic bandwidth [4]. 

2.  Photo-induced phase transition in Pr1-xCaxMnO3 
Pr1-xCaxMnO3 (PCMO) is a unique example among manganites, exhibiting insulating behavior over 

the entire chemical composition (x) and temperature range [5]. This is a consequence of the small 

ionic radius of Ca, which results in a pronounced orthorhombic distortion (Figure 1a) that favors 

charge localization. Notably, the insulating phase at x=0.3 adjoins a “hidden” metallic state of the 

system, characterized by enormous changes in resistivity. A 10-order-of-magnitude “colossal” 

negative magneto resistance is found at low temperatures at this doping level, associated with melting 

of the charge- and orbital-ordered state [5]. Other external stimuli can trigger insulator-metal 

transitions with comparable conductivity changes. Photo-excitation, application of static electric fields 

and pressure, x-ray irradiation and electron irradiation have been found to melt the charge-ordered, 

insulating state [2].  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. (a) Perovskite crystal structure of PCMO with pronounced orthorhombic distortion. 

(b) Time-resolved resistivity measurements following photoexcitation at 800 nm for 4, 16 and 

64 mJ/cm
2
 pump fluence. (c) Fluence dependence of photoinduced reflectivity changes at 

800 nm measured 300 fs after photoexcitation at the same wavelength. 

 

Time-resolved resistivity measurements in photo-excited PCMO at 77 K were performed first, 

evidencing a photo-induced transition to the metallic state (Figure 1b). A current amplifier was placed 

in series of the sample, which was held between two gold electrodes deposited on the surface. A 

prompt resistivity drop was observed from the static value of 3•10
4
 [Ω cm] to approximately 100 [mΩ 

cm]. This conductivity change is of similar magnitude as that obtained by application of a 6T magnetic 

field at this temperature and doping
 
[5]. The formation of the metallic state results in characteristic 

modifications of the reflectivity spectrum of PCMO at eV energy scales [6], deriving from melting of 

the charge order, collapse of the 0.3 eV insulating gap and formation of a pseudo plasma edge in the 

metallic state. Femtosecond pump-probe experiments were used to probe the time-dependent 

reflectivity of PCMO following photoexcitation. Figure 1c shows reflectivity changes at 800 nm 

measured 300 fs after excitation as a function of pump fluence. The fluence dependence of such 

changes exhibits highly non-linear behavior, with a threshold near 1 mJ/cm
2
, non-linear growth and 
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saturation above 40 mJ/cm
2
 (Figure 1c). This behavior and the long lifetime of the high conductivity 

state are indicative of cooperativity in the de-stabilization of charge-order and in a phase transition.  

3.  Phono-induced phase transition in Pr1-xCaxMnO3 

Coherent THz excitation of specific infrared-active modes can control the electronic phase of a 

manganite via direct modulation of structural parameters which determine the electronic bandwidth of 

these systems. In ABO3 perovskites, the orthorhombic distortion is quantified by the geometric 

“tolerance factor” that depends on the average A-O (A=Pr,Ca) and B-O (B=Mn) distances: 

Γ =
(A − O)

2(Mn − O)  

Γ = 1 corresponds to a cubic structure, while Γ < 1 reflects a compression of the Mn-O bond and an 

elongation of the A-O bond.  Γ is related to the electronic properties of the solid via the one electron 

bandwidth (W), since the capacity for 3d-electrons to hop between neighboring Mn-sites depends on 

super-transfer process via O(2p) states and on the degree of overlap between orbitals in neighboring 

sites [2-3].  The hopping matrix element is maximum at θ =180° (cubic), and decreases with θ, 

vanishing at θ = 90. Figure 2a shows the low-temperature optical conductivity spectrum of PCMO 

with three prominent phonon modes (23, 42, and 71 meV) [7]. The two highest frequency vibrations 

are assigned to the Mn-O-Mn bending mode and the Mn-O stretching mode respectively. Both 

vibrational modes modulate the geometrical parameters determining the tolerance factor and are thus 

expected to have a strong coupling to the electronic properties of the system. Here we study the effect 

of large-amplitude excitation of the highest-frequency Mn-O stretching vibration at 17 µm (17 THz or 

580 cm
-1

) by means of intense femtosecond mid-infrared pulses.  The material response is investigated 

using both ultrafast pump-probe spectroscopy and transient conductivity. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. (a) Low temperature optical conductivity spectrum of PCMO. The inset shows the 

atomic displacements within the MnO6 octahedra associated with the 17-µm phonon.  (b) 

Relative change of reflectivity at 800 nm (∆R/R) as a function of pulse delay following 

vibrational excitation at 17 µm (solid line) and 800-nm photo-excitation (dotted line). (c) Time-

dependent transport measurements, showing that vibrational excitation results in a ~10
3
 increase 

in the sample current (upper panel) and a ~10
5
 increase in the sample conductivity (lower panel). 

The experimental setup is the same as in the photoconductivity measurements described in 

Section 2.  

 

In the pump-probe spectroscopy studies, PCMO samples at 30 K are excited by 200 fs laser pulses 

centered at 17 µm, and the transient changes in reflectivity are measured over a broad spectral range 

(visible to near-infrared) in order to identify the characteristic spectral signatures and formation time 

of the metallic phase.  Figure 2b shows the transient reflectivity (∆R/R) at 800 nm following 

impulsive vibrational excitation (at a fluence of ~1mJ/cm
2
) and compared with above-bandgap pulsed 

excitation. The reflectivity responses are identical, with large long-lived changes in reflectivity 
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developing within 1 ps of excitation.  These changes are only observed for resonant excitation of the 

17 µm phonon and exhibit threshold and saturation dependence on the pump fluence, characteristic of 

a phase transformation to the metallic state, as previously established for above-bandgap excitation 

(see Section 2).
 
The spectrum of the reflectivity changes exhibits identical features as in the 

photoinduced case, with decreased reflectivity at photon energies in the 0.5-1.9 eV range and 

increased reflectivity at higher photon energies. These measurements provide evidence that the 

metallic state is formed promptly (within the 200 fs experimental resolution) via direct vibrational 

excitation, and that this state persists for 100’s of picoseconds. 

Changes in the sample conductivity are monitored by measuring the transient sample resistance 

following mid-IR excitation, in the same experimental configuration as described in the previous 

Section.  Mid-infrared excitation results in a 1000-fold increase in current (Figure 2c, upper panel).  

The high conductivity state develops and relaxes within the 4-ns resolution of the electronics.  Figure 

2c (lower panel) shows the 10
5
 increase of the sample conductivity derived from the measured 

transient resistance by assuming that the transition to the conductive state is uniform throughout the 

excited sample volume.  In these measurements, contributions from multiphoton interband carrier 

excitations are negligible (five photons at 17 µm are required to span the 0.3-eV insulating-bandgap of 

PCMO) and the moderate temperature jump due to laser excitation (estimated at <2 K) can be ruled 

out as the origin of the resistivity drop. These results clearly show that resonant excitation of the Mn-

O phonon vibration in PCMO drives the system, in the electronic ground state, into a metastable, 

nanosecond-lived, high-conductivity phase.  

The excitation of a specific phonon mode can thus trigger a transition toward a competing phase of 

the system. The ultrafast vibrational control of correlated-electron phases is likely applicable in other 

complex solids, providing new ways of studying electron correlation effects and the coupling between 

crystal structure and the conduction properties of strongly correlated electrons.  
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